This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Regularity
Introduce the Axiom of Regularity
nelaneqOLD
Metamath Proof Explorer
Description: Obsolete version of nelaneq as of 31-Dec-2025. (Proposed by BJ,
18-Jun-2022.) (Contributed by AV , 18-Jun-2022)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Assertion
nelaneqOLD
⊢ ¬ A ∈ B ∧ A = B
Proof
Step
Hyp
Ref
Expression
1
elneq
⊢ A ∈ B → A ≠ B
2
orc
⊢ ¬ A ∈ B → ¬ A ∈ B ∨ ¬ A = B
3
neneq
⊢ A ≠ B → ¬ A = B
4
3
olcd
⊢ A ≠ B → ¬ A ∈ B ∨ ¬ A = B
5
2 4
ja
⊢ A ∈ B → A ≠ B → ¬ A ∈ B ∨ ¬ A = B
6
1 5
ax-mp
⊢ ¬ A ∈ B ∨ ¬ A = B
7
ianor
⊢ ¬ A ∈ B ∧ A = B ↔ ¬ A ∈ B ∨ ¬ A = B
8
6 7
mpbir
⊢ ¬ A ∈ B ∧ A = B