This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
mpompt
Metamath Proof Explorer
Description: Express a two-argument function as a one-argument function, or
vice-versa. (Contributed by Mario Carneiro , 17-Dec-2013) (Revised by Mario Carneiro , 29-Dec-2014)
Ref
Expression
Hypothesis
mpompt.1
⊢ z = x y → C = D
Assertion
mpompt
⊢ z ∈ A × B ⟼ C = x ∈ A , y ∈ B ⟼ D
Proof
Step
Hyp
Ref
Expression
1
mpompt.1
⊢ z = x y → C = D
2
iunxpconst
⊢ ⋃ x ∈ A x × B = A × B
3
2
mpteq1i
⊢ z ∈ ⋃ x ∈ A x × B ⟼ C = z ∈ A × B ⟼ C
4
1
mpomptx
⊢ z ∈ ⋃ x ∈ A x × B ⟼ C = x ∈ A , y ∈ B ⟼ D
5
3 4
eqtr3i
⊢ z ∈ A × B ⟼ C = x ∈ A , y ∈ B ⟼ D