This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
mpodifsnif
Metamath Proof Explorer
Description: A mapping with two arguments with the first argument from a difference set
with a singleton and a conditional as result. (Contributed by AV , 13-Feb-2019)
Ref
Expression
Assertion
mpodifsnif
⊢ i ∈ A ∖ X , j ∈ B ⟼ if i = X C D = i ∈ A ∖ X , j ∈ B ⟼ D
Proof
Step
Hyp
Ref
Expression
1
eldifsnneq
⊢ i ∈ A ∖ X → ¬ i = X
2
1
adantr
⊢ i ∈ A ∖ X ∧ j ∈ B → ¬ i = X
3
2
iffalsed
⊢ i ∈ A ∖ X ∧ j ∈ B → if i = X C D = D
4
3
mpoeq3ia
⊢ i ∈ A ∖ X , j ∈ B ⟼ if i = X C D = i ∈ A ∖ X , j ∈ B ⟼ D