This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: An element of a polynomial algebra over a subring is an element of the
polynomial algebra. (Contributed by SN, 9-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
mplsubrgcl.w |
|
|
|
mplsubrgcl.u |
|
|
|
mplsubrgcl.b |
|
|
|
mplsubrgcl.p |
|
|
|
mplsubrgcl.c |
|
|
|
mplsubrgcl.i |
|
|
|
mplsubrgcl.r |
|
|
|
mplsubrgcl.f |
|
|
Assertion |
mplsubrgcl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplsubrgcl.w |
|
| 2 |
|
mplsubrgcl.u |
|
| 3 |
|
mplsubrgcl.b |
|
| 4 |
|
mplsubrgcl.p |
|
| 5 |
|
mplsubrgcl.c |
|
| 6 |
|
mplsubrgcl.i |
|
| 7 |
|
mplsubrgcl.r |
|
| 8 |
|
mplsubrgcl.f |
|
| 9 |
|
eqid |
|
| 10 |
4 2 1 3 6 7 9
|
ressmplbas |
|
| 11 |
9 5
|
ressbasss |
|
| 12 |
10 11
|
eqsstrdi |
|
| 13 |
12 8
|
sseldd |
|