This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
lelttrdi
Metamath Proof Explorer
Description: If a number is less than another number, and the other number is less
than or equal to a third number, the first number is less than the third
number. (Contributed by Alexander van der Vekens , 24-Mar-2018)
Ref
Expression
Hypotheses
lelttrdi.r
⊢ φ → A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ
lelttrdi.l
⊢ φ → B ≤ C
Assertion
lelttrdi
⊢ φ → A < B → A < C
Proof
Step
Hyp
Ref
Expression
1
lelttrdi.r
⊢ φ → A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ
2
lelttrdi.l
⊢ φ → B ≤ C
3
1
simp1d
⊢ φ → A ∈ ℝ
4
3
adantr
⊢ φ ∧ A < B → A ∈ ℝ
5
1
simp2d
⊢ φ → B ∈ ℝ
6
5
adantr
⊢ φ ∧ A < B → B ∈ ℝ
7
1
simp3d
⊢ φ → C ∈ ℝ
8
7
adantr
⊢ φ ∧ A < B → C ∈ ℝ
9
simpr
⊢ φ ∧ A < B → A < B
10
2
adantr
⊢ φ ∧ A < B → B ≤ C
11
4 6 8 9 10
ltletrd
⊢ φ ∧ A < B → A < C
12
11
ex
⊢ φ → A < B → A < C