This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
inecmo3
Metamath Proof Explorer
Description: Equivalence of a double universal quantification restricted to the
domain and an "at most one" inside a universal quantification.
(Contributed by Peter Mazsa , 5-Sep-2021)
Ref
Expression
Assertion
inecmo3
⊢ ∀ u ∈ dom ⁡ R ∀ v ∈ dom ⁡ R u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R ↔ ∀ x ∃ * u u R x ∧ Rel ⁡ R
Proof
Step
Hyp
Ref
Expression
1
inecmo2
⊢ ∀ u ∈ dom ⁡ R ∀ v ∈ dom ⁡ R u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R ↔ ∀ x ∃ * u ∈ dom ⁡ R u R x ∧ Rel ⁡ R
2
alrmomodm
⊢ Rel ⁡ R → ∀ x ∃ * u ∈ dom ⁡ R u R x ↔ ∀ x ∃ * u u R x
3
2
pm5.32ri
⊢ ∀ x ∃ * u ∈ dom ⁡ R u R x ∧ Rel ⁡ R ↔ ∀ x ∃ * u u R x ∧ Rel ⁡ R
4
1 3
bitri
⊢ ∀ u ∈ dom ⁡ R ∀ v ∈ dom ⁡ R u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R ↔ ∀ x ∃ * u u R x ∧ Rel ⁡ R