This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
ineccnvmo2
Metamath Proof Explorer
Description: Equivalence of a double universal quantification restricted to the range
and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa , 4-Sep-2021)
Ref
Expression
Assertion
ineccnvmo2
⊢ ∀ x ∈ ran ⁡ F ∀ y ∈ ran ⁡ F x = y ∨ x F -1 ∩ y F -1 = ∅ ↔ ∀ u ∃ * x u F x
Proof
Step
Hyp
Ref
Expression
1
ineccnvmo
⊢ ∀ x ∈ ran ⁡ F ∀ y ∈ ran ⁡ F x = y ∨ x F -1 ∩ y F -1 = ∅ ↔ ∀ u ∃ * x ∈ ran ⁡ F u F x
2
alrmomorn
⊢ ∀ u ∃ * x ∈ ran ⁡ F u F x ↔ ∀ u ∃ * x u F x
3
1 2
bitri
⊢ ∀ x ∈ ran ⁡ F ∀ y ∈ ran ⁡ F x = y ∨ x F -1 ∩ y F -1 = ∅ ↔ ∀ u ∃ * x u F x