This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem imp32

Description: An importation inference. (Contributed by NM, 26-Apr-1994)

Ref Expression
Hypothesis imp31.1 φ ψ χ θ
Assertion imp32 φ ψ χ θ

Proof

Step Hyp Ref Expression
1 imp31.1 φ ψ χ θ
2 1 impd φ ψ χ θ
3 2 imp φ ψ χ θ