This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
The conditional operator for propositions
ifpbi123d
Metamath Proof Explorer
Description: Equivalence deduction for conditional operator for propositions.
(Contributed by AV , 30-Dec-2020) (Proof shortened by Wolf Lammen , 17-Apr-2024)
Ref
Expression
Hypotheses
ifpbi123d.1
⊢ φ → ψ ↔ τ
ifpbi123d.2
⊢ φ → χ ↔ η
ifpbi123d.3
⊢ φ → θ ↔ ζ
Assertion
ifpbi123d
⊢ φ → if- ψ χ θ ↔ if- τ η ζ
Proof
Step
Hyp
Ref
Expression
1
ifpbi123d.1
⊢ φ → ψ ↔ τ
2
ifpbi123d.2
⊢ φ → χ ↔ η
3
ifpbi123d.3
⊢ φ → θ ↔ ζ
4
1 2
imbi12d
⊢ φ → ψ → χ ↔ τ → η
5
1 3
orbi12d
⊢ φ → ψ ∨ θ ↔ τ ∨ ζ
6
4 5
anbi12d
⊢ φ → ψ → χ ∧ ψ ∨ θ ↔ τ → η ∧ τ ∨ ζ
7
dfifp3
⊢ if- ψ χ θ ↔ ψ → χ ∧ ψ ∨ θ
8
dfifp3
⊢ if- τ η ζ ↔ τ → η ∧ τ ∨ ζ
9
6 7 8
3bitr4g
⊢ φ → if- ψ χ θ ↔ if- τ η ζ