This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The identity is an isomorphism. Example 3.13 of Adamek p. 28.
(Contributed by AV, 8-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
invid.b |
|
|
|
invid.i |
|
|
|
invid.c |
|
|
|
invid.x |
|
|
Assertion |
idiso |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invid.b |
|
| 2 |
|
invid.i |
|
| 3 |
|
invid.c |
|
| 4 |
|
invid.x |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 2 3 4
|
invid |
|
| 8 |
1 5 3 4 4 6 7
|
inviso1 |
|