This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem icogelbd

Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses icogelbd.1 φ A *
icogelbd.2 φ B *
icogelbd.3 φ C A B
Assertion icogelbd φ A C

Proof

Step Hyp Ref Expression
1 icogelbd.1 φ A *
2 icogelbd.2 φ B *
3 icogelbd.3 φ C A B
4 icogelb A * B * C A B A C
5 1 2 3 4 syl3anc φ A C