This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
icogelb
Metamath Proof Explorer
Description: An element of a left-closed right-open interval is greater than or equal
to its lower bound. (Contributed by Glauco Siliprandi , 11-Dec-2019)
Ref
Expression
Assertion
icogelb
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ A B → A ≤ C
Proof
Step
Hyp
Ref
Expression
1
elico1
⊢ A ∈ ℝ * ∧ B ∈ ℝ * → C ∈ A B ↔ C ∈ ℝ * ∧ A ≤ C ∧ C < B
2
simp2
⊢ C ∈ ℝ * ∧ A ≤ C ∧ C < B → A ≤ C
3
1 2
biimtrdi
⊢ A ∈ ℝ * ∧ B ∈ ℝ * → C ∈ A B → A ≤ C
4
3
3impia
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ A B → A ≤ C