This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Operations on Hilbert space operators
hoadd12i
Metamath Proof Explorer
Description: Commutative/associative law for Hilbert space operator sum that swaps
the first two terms. (Contributed by NM , 27-Aug-2004)
(New usage is discouraged.)
Ref
Expression
Hypotheses
hods.1
⊢ R : ℋ ⟶ ℋ
hods.2
⊢ S : ℋ ⟶ ℋ
hods.3
⊢ T : ℋ ⟶ ℋ
Assertion
hoadd12i
⊢ R + op S + op T = S + op R + op T
Proof
Step
Hyp
Ref
Expression
1
hods.1
⊢ R : ℋ ⟶ ℋ
2
hods.2
⊢ S : ℋ ⟶ ℋ
3
hods.3
⊢ T : ℋ ⟶ ℋ
4
1 2
hoaddcomi
⊢ R + op S = S + op R
5
4
oveq1i
⊢ R + op S + op T = S + op R + op T
6
1 2 3
hoaddassi
⊢ R + op S + op T = R + op S + op T
7
2 1 3
hoaddassi
⊢ S + op R + op T = S + op R + op T
8
5 6 7
3eqtr3i
⊢ R + op S + op T = S + op R + op T