This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Operations on Hilbert space operators
hoadd32i
Metamath Proof Explorer
Description: Commutative/associative law for Hilbert space operator sum that swaps
the second and third terms. (Contributed by NM , 27-Jul-2006)
(New usage is discouraged.)
Ref
Expression
Hypotheses
hods.1
⊢ R : ℋ ⟶ ℋ
hods.2
⊢ S : ℋ ⟶ ℋ
hods.3
⊢ T : ℋ ⟶ ℋ
Assertion
hoadd32i
⊢ R + op S + op T = R + op T + op S
Proof
Step
Hyp
Ref
Expression
1
hods.1
⊢ R : ℋ ⟶ ℋ
2
hods.2
⊢ S : ℋ ⟶ ℋ
3
hods.3
⊢ T : ℋ ⟶ ℋ
4
2 3
hoaddcomi
⊢ S + op T = T + op S
5
4
oveq2i
⊢ R + op S + op T = R + op T + op S
6
1 2 3
hoaddassi
⊢ R + op S + op T = R + op S + op T
7
1 3 2
hoaddassi
⊢ R + op T + op S = R + op T + op S
8
5 6 7
3eqtr4i
⊢ R + op S + op T = R + op T + op S