This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-7 (Equality)
hbn1fw
Metamath Proof Explorer
Description: Weak version of ax-10 from which we can prove any ax-10 instance not
involving wff variables or bundling. Uses only Tarski's FOL axiom
schemes. (Contributed by NM , 19-Apr-2017) (Proof shortened by Wolf
Lammen , 28-Feb-2018)
Ref
Expression
Hypotheses
hbn1fw.1
⊢ ∀ x φ → ∀ y ∀ x φ
hbn1fw.2
⊢ ¬ ψ → ∀ x ¬ ψ
hbn1fw.3
⊢ ∀ y ψ → ∀ x ∀ y ψ
hbn1fw.4
⊢ ¬ φ → ∀ y ¬ φ
hbn1fw.5
⊢ ¬ ∀ y ψ → ∀ x ¬ ∀ y ψ
hbn1fw.6
⊢ x = y → φ ↔ ψ
Assertion
hbn1fw
⊢ ¬ ∀ x φ → ∀ x ¬ ∀ x φ
Proof
Step
Hyp
Ref
Expression
1
hbn1fw.1
⊢ ∀ x φ → ∀ y ∀ x φ
2
hbn1fw.2
⊢ ¬ ψ → ∀ x ¬ ψ
3
hbn1fw.3
⊢ ∀ y ψ → ∀ x ∀ y ψ
4
hbn1fw.4
⊢ ¬ φ → ∀ y ¬ φ
5
hbn1fw.5
⊢ ¬ ∀ y ψ → ∀ x ¬ ∀ y ψ
6
hbn1fw.6
⊢ x = y → φ ↔ ψ
7
1 2 3 4 6
cbvalw
⊢ ∀ x φ ↔ ∀ y ψ
8
7
notbii
⊢ ¬ ∀ x φ ↔ ¬ ∀ y ψ
9
8 5
hbxfrbi
⊢ ¬ ∀ x φ → ∀ x ¬ ∀ x φ