This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
hashdif
Metamath Proof Explorer
Description: The size of the difference of a finite set and another set is the first
set's size minus that of the intersection of both. (Contributed by Steve
Rodriguez , 24-Oct-2015)
Ref
Expression
Assertion
hashdif
⊢ A ∈ Fin → A ∖ B = A − A ∩ B
Proof
Step
Hyp
Ref
Expression
1
difin
⊢ A ∖ A ∩ B = A ∖ B
2
1
fveq2i
⊢ A ∖ A ∩ B = A ∖ B
3
inss1
⊢ A ∩ B ⊆ A
4
hashssdif
⊢ A ∈ Fin ∧ A ∩ B ⊆ A → A ∖ A ∩ B = A − A ∩ B
5
3 4
mpan2
⊢ A ∈ Fin → A ∖ A ∩ B = A − A ∩ B
6
2 5
eqtr3id
⊢ A ∈ Fin → A ∖ B = A − A ∩ B