This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumreidx
Metamath Proof Explorer
Description: Re-index a finite group sum using a bijection. Corresponds to the first
equation in Lang p. 5 with M = 1 . (Contributed by AV , 26-Dec-2023)
Ref
Expression
Hypotheses
gsumreidx.b
⊢ B = Base G
gsumreidx.z
⊢ 0 ˙ = 0 G
gsumreidx.g
⊢ φ → G ∈ CMnd
gsumreidx.f
⊢ φ → F : M … N ⟶ B
gsumreidx.h
⊢ φ → H : M … N ⟶ 1-1 onto M … N
Assertion
gsumreidx
⊢ φ → ∑ G F = ∑ G F ∘ H
Proof
Step
Hyp
Ref
Expression
1
gsumreidx.b
⊢ B = Base G
2
gsumreidx.z
⊢ 0 ˙ = 0 G
3
gsumreidx.g
⊢ φ → G ∈ CMnd
4
gsumreidx.f
⊢ φ → F : M … N ⟶ B
5
gsumreidx.h
⊢ φ → H : M … N ⟶ 1-1 onto M … N
6
ovexd
⊢ φ → M … N ∈ V
7
fzfid
⊢ φ → M … N ∈ Fin
8
2
fvexi
⊢ 0 ˙ ∈ V
9
8
a1i
⊢ φ → 0 ˙ ∈ V
10
4 7 9
fdmfifsupp
⊢ φ → finSupp 0 ˙ ⁡ F
11
1 2 3 6 4 10 5
gsumf1o
⊢ φ → ∑ G F = ∑ G F ∘ H