This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumf1o
Metamath Proof Explorer
Description: Re-index a finite group sum using a bijection. (Contributed by Mario
Carneiro , 15-Dec-2014) (Revised by Mario Carneiro , 24-Apr-2016)
(Revised by AV , 3-Jun-2019)
Ref
Expression
Hypotheses
gsumcl.b
⊢ B = Base G
gsumcl.z
⊢ 0 ˙ = 0 G
gsumcl.g
⊢ φ → G ∈ CMnd
gsumcl.a
⊢ φ → A ∈ V
gsumcl.f
⊢ φ → F : A ⟶ B
gsumcl.w
⊢ φ → finSupp 0 ˙ ⁡ F
gsumf1o.h
⊢ φ → H : C ⟶ 1-1 onto A
Assertion
gsumf1o
⊢ φ → ∑ G F = ∑ G F ∘ H
Proof
Step
Hyp
Ref
Expression
1
gsumcl.b
⊢ B = Base G
2
gsumcl.z
⊢ 0 ˙ = 0 G
3
gsumcl.g
⊢ φ → G ∈ CMnd
4
gsumcl.a
⊢ φ → A ∈ V
5
gsumcl.f
⊢ φ → F : A ⟶ B
6
gsumcl.w
⊢ φ → finSupp 0 ˙ ⁡ F
7
gsumf1o.h
⊢ φ → H : C ⟶ 1-1 onto A
8
eqid
⊢ Cntz ⁡ G = Cntz ⁡ G
9
cmnmnd
⊢ G ∈ CMnd → G ∈ Mnd
10
3 9
syl
⊢ φ → G ∈ Mnd
11
1 8 3 5
cntzcmnf
⊢ φ → ran ⁡ F ⊆ Cntz ⁡ G ⁡ ran ⁡ F
12
1 2 8 10 4 5 11 6 7
gsumzf1o
⊢ φ → ∑ G F = ∑ G F ∘ H