This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Definitions and basic theorems
fstwrdne
Metamath Proof Explorer
Description: The first symbol of a nonempty word is an element of the alphabet for the
word. (Contributed by AV , 28-Sep-2018) (Proof shortened by AV , 14-Oct-2018)
Ref
Expression
Assertion
fstwrdne
⊢ W ∈ Word V ∧ W ≠ ∅ → W ⁡ 0 ∈ V
Proof
Step
Hyp
Ref
Expression
1
wrdlenge1n0
⊢ W ∈ Word V → W ≠ ∅ ↔ 1 ≤ W
2
wrdsymb1
⊢ W ∈ Word V ∧ 1 ≤ W → W ⁡ 0 ∈ V
3
2
ex
⊢ W ∈ Word V → 1 ≤ W → W ⁡ 0 ∈ V
4
1 3
sylbid
⊢ W ∈ Word V → W ≠ ∅ → W ⁡ 0 ∈ V
5
4
imp
⊢ W ∈ Word V ∧ W ≠ ∅ → W ⁡ 0 ∈ V