This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Well-founded recursion
frrrel
Metamath Proof Explorer
Description: Show without using the axiom of replacement that the well-founded
recursion generator gives a relation. (Contributed by Scott Fenton , 18-Nov-2024)
Ref
Expression
Hypothesis
frrrel.1
⊢ F = frecs ⁡ R A G
Assertion
frrrel
⊢ Rel ⁡ F
Proof
Step
Hyp
Ref
Expression
1
frrrel.1
⊢ F = frecs ⁡ R A G
2
eqid
⊢ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y = f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
3
2 1
frrlem6
⊢ Rel ⁡ F