This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Well-founded recursion
frrdmss
Metamath Proof Explorer
Description: Show without using the axiom of replacement that the domain of the
well-founded recursion generator is a subclass of A . (Contributed by Scott Fenton , 18-Nov-2024)
Ref
Expression
Hypothesis
frrrel.1
⊢ F = frecs ⁡ R A G
Assertion
frrdmss
⊢ dom ⁡ F ⊆ A
Proof
Step
Hyp
Ref
Expression
1
frrrel.1
⊢ F = frecs ⁡ R A G
2
eqid
⊢ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y = f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
3
2 1
frrlem7
⊢ dom ⁡ F ⊆ A