This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
f1dom2g
Metamath Proof Explorer
Description: The domain of a one-to-one function is dominated by its codomain. This
variation of f1domg does not require the Axiom of Replacement.
(Contributed by Mario Carneiro , 24-Jun-2015) (Proof shortened by BTernaryTau , 25-Sep-2024)
Ref
Expression
Assertion
f1dom2g
⊢ A ∈ V ∧ B ∈ W ∧ F : A ⟶ 1-1 B → A ≼ B
Proof
Step
Hyp
Ref
Expression
1
f1f
⊢ F : A ⟶ 1-1 B → F : A ⟶ B
2
fex2
⊢ F : A ⟶ B ∧ A ∈ V ∧ B ∈ W → F ∈ V
3
1 2
syl3an1
⊢ F : A ⟶ 1-1 B ∧ A ∈ V ∧ B ∈ W → F ∈ V
4
3
3coml
⊢ A ∈ V ∧ B ∈ W ∧ F : A ⟶ 1-1 B → F ∈ V
5
f1dom3g
⊢ F ∈ V ∧ B ∈ W ∧ F : A ⟶ 1-1 B → A ≼ B
6
4 5
syld3an1
⊢ A ∈ V ∧ B ∈ W ∧ F : A ⟶ 1-1 B → A ≼ B