This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
euan
Metamath Proof Explorer
Description: Introduction of a conjunct into unique existential quantifier.
(Contributed by NM , 19-Feb-2005) (Proof shortened by Andrew Salmon , 9-Jul-2011) (Proof shortened by Wolf Lammen , 24-Dec-2018)
Ref
Expression
Hypothesis
moanim.1
⊢ Ⅎ x φ
Assertion
euan
⊢ ∃! x φ ∧ ψ ↔ φ ∧ ∃! x ψ
Proof
Step
Hyp
Ref
Expression
1
moanim.1
⊢ Ⅎ x φ
2
euex
⊢ ∃! x φ ∧ ψ → ∃ x φ ∧ ψ
3
simpl
⊢ φ ∧ ψ → φ
4
1 3
exlimi
⊢ ∃ x φ ∧ ψ → φ
5
2 4
syl
⊢ ∃! x φ ∧ ψ → φ
6
ibar
⊢ φ → ψ ↔ φ ∧ ψ
7
1 6
eubid
⊢ φ → ∃! x ψ ↔ ∃! x φ ∧ ψ
8
7
biimprcd
⊢ ∃! x φ ∧ ψ → φ → ∃! x ψ
9
5 8
jcai
⊢ ∃! x φ ∧ ψ → φ ∧ ∃! x ψ
10
7
biimpa
⊢ φ ∧ ∃! x ψ → ∃! x φ ∧ ψ
11
9 10
impbii
⊢ ∃! x φ ∧ ψ ↔ φ ∧ ∃! x ψ