This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
erexb
Metamath Proof Explorer
Description: An equivalence relation is a set if and only if its domain is a set.
(Contributed by Rodolfo Medina , 15-Oct-2010) (Revised by Mario Carneiro , 12-Aug-2015)
Ref
Expression
Assertion
erexb
⊢ R Er A → R ∈ V ↔ A ∈ V
Proof
Step
Hyp
Ref
Expression
1
dmexg
⊢ R ∈ V → dom ⁡ R ∈ V
2
erdm
⊢ R Er A → dom ⁡ R = A
3
2
eleq1d
⊢ R Er A → dom ⁡ R ∈ V ↔ A ∈ V
4
1 3
imbitrid
⊢ R Er A → R ∈ V → A ∈ V
5
erex
⊢ R Er A → A ∈ V → R ∈ V
6
4 5
impbid
⊢ R Er A → R ∈ V ↔ A ∈ V