This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
equs5eALT
Metamath Proof Explorer
Description: Alternate proof of equs5e . Uses ax-12 but not ax-13 .
(Contributed by NM , 2-Feb-2007) (Proof shortened by Wolf Lammen , 15-Jan-2018) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
equs5eALT
⊢ ∃ x x = y ∧ φ → ∀ x x = y → ∃ y φ
Proof
Step
Hyp
Ref
Expression
1
nfa1
⊢ Ⅎ x ∀ x x = y → ∃ y φ
2
hbe1
⊢ ∃ y φ → ∀ y ∃ y φ
3
2
19.23bi
⊢ φ → ∀ y ∃ y φ
4
ax-12
⊢ x = y → ∀ y ∃ y φ → ∀ x x = y → ∃ y φ
5
3 4
syl5
⊢ x = y → φ → ∀ x x = y → ∃ y φ
6
5
imp
⊢ x = y ∧ φ → ∀ x x = y → ∃ y φ
7
1 6
exlimi
⊢ ∃ x x = y ∧ φ → ∀ x x = y → ∃ y φ