This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number theorems using Axiom of Choice
entri3
Metamath Proof Explorer
Description: Trichotomy of dominance. This theorem is equivalent to the Axiom of
Choice. Part of Proposition 4.42(d) of Mendelson p. 275. (Contributed by NM , 4-Jan-2004)
Ref
Expression
Assertion
entri3
⊢ A ∈ V ∧ B ∈ W → A ≼ B ∨ B ≼ A
Proof
Step
Hyp
Ref
Expression
1
entri2
⊢ A ∈ V ∧ B ∈ W → A ≼ B ∨ B ≺ A
2
sdomdom
⊢ B ≺ A → B ≼ A
3
2
orim2i
⊢ A ≼ B ∨ B ≺ A → A ≼ B ∨ B ≼ A
4
1 3
syl
⊢ A ∈ V ∧ B ∈ W → A ≼ B ∨ B ≼ A