This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomsdomcard |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | ||
| 2 | 1 | brrelex2i | |
| 3 | numth3 | ||
| 4 | cardid2 | ||
| 5 | ensym | ||
| 6 | 2 3 4 5 | 4syl | |
| 7 | sdomentr | ||
| 8 | 6 7 | mpdan | |
| 9 | sdomsdomcardi | ||
| 10 | 8 9 | impbii |