This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Dedekind-cut construction of real and complex numbers
enrer
Metamath Proof Explorer
Description: The equivalence relation for signed reals is an equivalence relation.
Proposition 9-4.1 of Gleason p. 126. (Contributed by NM , 3-Sep-1995)
(Revised by Mario Carneiro , 6-Jul-2015) (New usage is discouraged.)
Ref
Expression
Assertion
enrer
⊢ ~ 𝑹 Er 𝑷 × 𝑷
Proof
Step
Hyp
Ref
Expression
1
df-enr
⊢ ~ 𝑹 = x y | x ∈ 𝑷 × 𝑷 ∧ y ∈ 𝑷 × 𝑷 ∧ ∃ z ∃ w ∃ v ∃ u x = z w ∧ y = v u ∧ z + 𝑷 u = w + 𝑷 v
2
addcompr
⊢ x + 𝑷 y = y + 𝑷 x
3
addclpr
⊢ x ∈ 𝑷 ∧ y ∈ 𝑷 → x + 𝑷 y ∈ 𝑷
4
addasspr
⊢ x + 𝑷 y + 𝑷 z = x + 𝑷 y + 𝑷 z
5
addcanpr
⊢ x ∈ 𝑷 ∧ y ∈ 𝑷 → x + 𝑷 y = x + 𝑷 z → y = z
6
1 2 3 4 5
ecopover
⊢ ~ 𝑹 Er 𝑷 × 𝑷