This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eltop

Description: Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion eltop J Top A J A J 𝒫 A

Proof

Step Hyp Ref Expression
1 tgtop J Top topGen J = J
2 1 eleq2d J Top A topGen J A J
3 eltg J Top A topGen J A J 𝒫 A
4 2 3 bitr3d J Top A J A J 𝒫 A