This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eltop2

Description: Membership in a topology. (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion eltop2 J Top A J x A y J x y y A

Proof

Step Hyp Ref Expression
1 tgtop J Top topGen J = J
2 1 eleq2d J Top A topGen J A J
3 eltg2b J Top A topGen J x A y J x y y A
4 2 3 bitr3d J Top A J x A y J x y y A