This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Reflexivity and symmetry
elrefsymrelsrel
Metamath Proof Explorer
Description: For sets, being an element of the class of reflexive and symmetric
relations is equivalent to satisfying the reflexive and symmetric relation
predicates. (Contributed by Peter Mazsa , 23-Aug-2021)
Ref
Expression
Assertion
elrefsymrelsrel
⊢ R ∈ V → R ∈ RefRels ∩ SymRels ↔ RefRel R ∧ SymRel R
Proof
Step
Hyp
Ref
Expression
1
elin
⊢ R ∈ RefRels ∩ SymRels ↔ R ∈ RefRels ∧ R ∈ SymRels
2
elrefrelsrel
⊢ R ∈ V → R ∈ RefRels ↔ RefRel R
3
elsymrelsrel
⊢ R ∈ V → R ∈ SymRels ↔ SymRel R
4
2 3
anbi12d
⊢ R ∈ V → R ∈ RefRels ∧ R ∈ SymRels ↔ RefRel R ∧ SymRel R
5
1 4
bitrid
⊢ R ∈ V → R ∈ RefRels ∩ SymRels ↔ RefRel R ∧ SymRel R