This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Reflexivity
elrefrelsrel
Metamath Proof Explorer
Description: For sets, being an element of the class of reflexive relations
( df-refrels ) is equivalent to satisfying the reflexive relation
predicate. (Contributed by Peter Mazsa , 25-Jul-2021)
Ref
Expression
Assertion
elrefrelsrel
⊢ R ∈ V → R ∈ RefRels ↔ RefRel R
Proof
Step
Hyp
Ref
Expression
1
elrelsrel
⊢ R ∈ V → R ∈ Rels ↔ Rel ⁡ R
2
1
anbi2d
⊢ R ∈ V → I ∩ dom ⁡ R × ran ⁡ R ⊆ R ∧ R ∈ Rels ↔ I ∩ dom ⁡ R × ran ⁡ R ⊆ R ∧ Rel ⁡ R
3
elrefrels2
⊢ R ∈ RefRels ↔ I ∩ dom ⁡ R × ran ⁡ R ⊆ R ∧ R ∈ Rels
4
dfrefrel2
⊢ RefRel R ↔ I ∩ dom ⁡ R × ran ⁡ R ⊆ R ∧ Rel ⁡ R
5
2 3 4
3bitr4g
⊢ R ∈ V → R ∈ RefRels ↔ RefRel R