This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem elrab3

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006)

Ref Expression
Hypothesis elrab.1 x = A φ ψ
Assertion elrab3 A B A x B | φ ψ

Proof

Step Hyp Ref Expression
1 elrab.1 x = A φ ψ
2 1 elrab A x B | φ A B ψ
3 2 baib A B A x B | φ ψ