This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
eldmressnsn
Metamath Proof Explorer
Description: The element of the domain of a restriction to a singleton is the element
of the singleton. (Contributed by Alexander van der Vekens , 2-Jul-2017)
Ref
Expression
Assertion
eldmressnsn
⊢ A ∈ dom ⁡ F → A ∈ dom ⁡ F ↾ A
Proof
Step
Hyp
Ref
Expression
1
snidg
⊢ A ∈ dom ⁡ F → A ∈ A
2
dmressnsn
⊢ A ∈ dom ⁡ F → dom ⁡ F ↾ A = A
3
1 2
eleqtrrd
⊢ A ∈ dom ⁡ F → A ∈ dom ⁡ F ↾ A