This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
eldmeldmressn
Metamath Proof Explorer
Description: An element of the domain (of a relation) is an element of the domain of
the restriction (of the relation) to the singleton containing this
element. (Contributed by Alexander van der Vekens , 22-Jul-2018)
Ref
Expression
Assertion
eldmeldmressn
⊢ X ∈ dom ⁡ F ↔ X ∈ dom ⁡ F ↾ X
Proof
Step
Hyp
Ref
Expression
1
eldmressnsn
⊢ X ∈ dom ⁡ F → X ∈ dom ⁡ F ↾ X
2
elinel2
⊢ X ∈ X ∩ dom ⁡ F → X ∈ dom ⁡ F
3
dmres
⊢ dom ⁡ F ↾ X = X ∩ dom ⁡ F
4
2 3
eleq2s
⊢ X ∈ dom ⁡ F ↾ X → X ∈ dom ⁡ F
5
1 4
impbii
⊢ X ∈ dom ⁡ F ↔ X ∈ dom ⁡ F ↾ X