This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Theorems about operators and functionals
elbdop
Metamath Proof Explorer
Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM , 18-Jan-2006) (Revised by Mario Carneiro , 16-Nov-2013)
(New usage is discouraged.)
Ref
Expression
Assertion
elbdop
⊢ T ∈ BndLinOp ↔ T ∈ LinOp ∧ norm op ⁡ T < +∞
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢ t = T → norm op ⁡ t = norm op ⁡ T
2
1
breq1d
⊢ t = T → norm op ⁡ t < +∞ ↔ norm op ⁡ T < +∞
3
df-bdop
⊢ BndLinOp = t ∈ LinOp | norm op ⁡ t < +∞
4
2 3
elrab2
⊢ T ∈ BndLinOp ↔ T ∈ LinOp ∧ norm op ⁡ T < +∞