This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem drsb2

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of Megill p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005)

Ref Expression
Assertion drsb2 x x = y x z φ y z φ

Proof

Step Hyp Ref Expression
1 sbequ x = y x z φ y z φ
2 1 sps x x = y x z φ y z φ