This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: At-most-one quantifier expressed using implicit substitution. This theorem is also a direct consequence of mo4f , but this proof is based on fewer axioms.
By the way, swapping x , y and ph , ps leads to an expression for E* y ps , which is equivalent to E* x ph (is a proof line), so the right hand side is a rare instance of an expression where swapping the quantifiers can be done without ax-11 . (Contributed by NM, 26-Jul-1995) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mo4.1 | ||
| Assertion | mo4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo4.1 | ||
| 2 | df-mo | ||
| 3 | equequ1 | ||
| 4 | 1 3 | imbi12d | |
| 5 | 4 | cbvalvw | |
| 6 | 5 | biimpi | |
| 7 | pm2.27 | ||
| 8 | pm2.27 | ||
| 9 | 7 8 | im2anan9 | |
| 10 | equtr2 | ||
| 11 | 9 10 | syl6com | |
| 12 | 11 | ex | |
| 13 | 12 | alimdv | |
| 14 | 13 | com12 | |
| 15 | 14 | alimdv | |
| 16 | 6 15 | mpcom | |
| 17 | 16 | exlimiv | |
| 18 | 2 17 | sylbi | |
| 19 | 1 | cbvexvw | |
| 20 | 19 | biimpri | |
| 21 | ax6evr | ||
| 22 | pm3.2 | ||
| 23 | 22 | imim1d | |
| 24 | ax7 | ||
| 25 | 23 24 | syl8 | |
| 26 | 25 | com4r | |
| 27 | 26 | impcom | |
| 28 | 27 | alimdv | |
| 29 | 28 | impancom | |
| 30 | 29 | eximdv | |
| 31 | 21 30 | mpi | |
| 32 | df-mo | ||
| 33 | 31 32 | sylibr | |
| 34 | 33 | expcom | |
| 35 | 34 | aleximi | |
| 36 | ax5e | ||
| 37 | 20 35 36 | syl56 | |
| 38 | 5 | exbii | |
| 39 | 38 2 32 | 3bitr4i | |
| 40 | moabs | ||
| 41 | 39 40 | bitri | |
| 42 | 37 41 | sylibr | |
| 43 | 18 42 | impbii |