This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
df-funpart
Metamath Proof Explorer
Description: Define the functional part of a class F . This is the maximal part of
F that is a function. See funpartfun and funpartfv for the
meaning of this statement. (Contributed by Scott Fenton , 16-Apr-2014)
Ref
Expression
Assertion
df-funpart
⊢ 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F = F ↾ dom ⁡ 𝖨𝗆𝖺𝗀𝖾 F ∘ 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 ∩ V × 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cF
class F
1
0
cfunpart
class 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F
2
0
cimage
class 𝖨𝗆𝖺𝗀𝖾 F
3
csingle
class 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
4
2 3
ccom
class 𝖨𝗆𝖺𝗀𝖾 F ∘ 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
5
cvv
class V
6
csingles
class 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
7
5 6
cxp
class V × 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
8
4 7
cin
class 𝖨𝗆𝖺𝗀𝖾 F ∘ 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 ∩ V × 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
9
8
cdm
class dom ⁡ 𝖨𝗆𝖺𝗀𝖾 F ∘ 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 ∩ V × 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
10
0 9
cres
class F ↾ dom ⁡ 𝖨𝗆𝖺𝗀𝖾 F ∘ 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 ∩ V × 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
11
1 10
wceq
wff 𝖥𝗎𝗇𝖯𝖺𝗋𝗍 F = F ↾ dom ⁡ 𝖨𝗆𝖺𝗀𝖾 F ∘ 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 ∩ V × 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌