This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A commutative ring's multiplication operation is commutative.
(Contributed by Mario Carneiro, 7-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
ringcl.b |
|
|
|
ringcl.t |
|
|
Assertion |
crngcom |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringcl.b |
|
| 2 |
|
ringcl.t |
|
| 3 |
|
eqid |
|
| 4 |
3
|
crngmgp |
|
| 5 |
3 1
|
mgpbas |
|
| 6 |
3 2
|
mgpplusg |
|
| 7 |
5 6
|
cmncom |
|
| 8 |
4 7
|
syl3an1 |
|