This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Converse reflexivity
cosselcnvrefrels3
Metamath Proof Explorer
Description: Necessary and sufficient condition for a coset relation to be an element
of the converse reflexive relation class. (Contributed by Peter Mazsa , 30-Aug-2021)
Ref
Expression
Assertion
cosselcnvrefrels3
⊢ ≀ R ∈ CnvRefRels ↔ ∀ u ∀ x ∀ y u R x ∧ u R y → x = y ∧ ≀ R ∈ Rels
Proof
Step
Hyp
Ref
Expression
1
cosselcnvrefrels2
⊢ ≀ R ∈ CnvRefRels ↔ ≀ R ⊆ I ∧ ≀ R ∈ Rels
2
cossssid3
⊢ ≀ R ⊆ I ↔ ∀ u ∀ x ∀ y u R x ∧ u R y → x = y
3
2
anbi1i
⊢ ≀ R ⊆ I ∧ ≀ R ∈ Rels ↔ ∀ u ∀ x ∀ y u R x ∧ u R y → x = y ∧ ≀ R ∈ Rels
4
1 3
bitri
⊢ ≀ R ∈ CnvRefRels ↔ ∀ u ∀ x ∀ y u R x ∧ u R y → x = y ∧ ≀ R ∈ Rels