This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Cosets by ` R `
cosscnvssid5
Metamath Proof Explorer
Description: Equivalent expressions for the class of cosets by the converse of the
relation R to be a subset of the identity class. (Contributed by Peter Mazsa , 5-Sep-2021)
Ref
Expression
Assertion
cosscnvssid5
⊢ ≀ R -1 ⊆ I ∧ Rel ⁡ R ↔ ∀ u ∈ dom ⁡ R ∀ v ∈ dom ⁡ R u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R
Proof
Step
Hyp
Ref
Expression
1
cosscnvssid4
⊢ ≀ R -1 ⊆ I ↔ ∀ x ∃ * u u R x
2
1
anbi1i
⊢ ≀ R -1 ⊆ I ∧ Rel ⁡ R ↔ ∀ x ∃ * u u R x ∧ Rel ⁡ R
3
inecmo3
⊢ ∀ u ∈ dom ⁡ R ∀ v ∈ dom ⁡ R u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R ↔ ∀ x ∃ * u u R x ∧ Rel ⁡ R
4
2 3
bitr4i
⊢ ≀ R -1 ⊆ I ∧ Rel ⁡ R ↔ ∀ u ∈ dom ⁡ R ∀ v ∈ dom ⁡ R u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R