This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem con1bid

Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999)

Ref Expression
Hypothesis con1bid.1 φ ¬ ψ χ
Assertion con1bid φ ¬ χ ψ

Proof

Step Hyp Ref Expression
1 con1bid.1 φ ¬ ψ χ
2 1 bicomd φ χ ¬ ψ
3 2 con2bid φ ψ ¬ χ
4 3 bicomd φ ¬ χ ψ