This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013)
|
|
Ref |
Expression |
|
Hypotheses |
coep.1 |
|
|
|
coep.2 |
|
|
Assertion |
coepr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coep.1 |
|
| 2 |
|
coep.2 |
|
| 3 |
|
vex |
|
| 4 |
1 3
|
brcnv |
|
| 5 |
1
|
epeli |
|
| 6 |
4 5
|
bitri |
|
| 7 |
6
|
anbi1i |
|
| 8 |
7
|
exbii |
|
| 9 |
1 2
|
brco |
|
| 10 |
|
df-rex |
|
| 11 |
8 9 10
|
3bitr4i |
|