This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem brdomi

Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015) Avoid ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion brdomi A B f f : A 1-1 B

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex12i A B A V B V
3 brdom2g A V B V A B f f : A 1-1 B
4 2 3 syl A B A B f f : A 1-1 B
5 4 ibi A B f f : A 1-1 B