This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
brdom2g
Metamath Proof Explorer
Description: Dominance relation. This variation of brdomg does not require the
Axiom of Union. (Contributed by NM , 15-Jun-1998) Extract from a
subproof of brdomg . (Revised by BTernaryTau , 29-Nov-2024)
Ref
Expression
Assertion
brdom2g
⊢ A ∈ V ∧ B ∈ W → A ≼ B ↔ ∃ f f : A ⟶ 1-1 B
Proof
Step
Hyp
Ref
Expression
1
f1eq2
⊢ x = A → f : x ⟶ 1-1 y ↔ f : A ⟶ 1-1 y
2
1
exbidv
⊢ x = A → ∃ f f : x ⟶ 1-1 y ↔ ∃ f f : A ⟶ 1-1 y
3
f1eq3
⊢ y = B → f : A ⟶ 1-1 y ↔ f : A ⟶ 1-1 B
4
3
exbidv
⊢ y = B → ∃ f f : A ⟶ 1-1 y ↔ ∃ f f : A ⟶ 1-1 B
5
df-dom
⊢ ≼ = x y | ∃ f f : x ⟶ 1-1 y
6
2 4 5
brabg
⊢ A ∈ V ∧ B ∈ W → A ≼ B ↔ ∃ f f : A ⟶ 1-1 B