This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bnnlm

Description: A Banach space is a normed module. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion bnnlm W Ban W NrmMod

Proof

Step Hyp Ref Expression
1 bnnvc W Ban W NrmVec
2 nvcnlm W NrmVec W NrmMod
3 1 2 syl W Ban W NrmMod