This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bnngp

Description: A Banach space is a normed group. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion bnngp W Ban W NrmGrp

Proof

Step Hyp Ref Expression
1 bnnlm W Ban W NrmMod
2 nlmngp W NrmMod W NrmGrp
3 1 2 syl W Ban W NrmGrp