This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bicom1

Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012)

Ref Expression
Assertion bicom1 φ ψ ψ φ

Proof

Step Hyp Ref Expression
1 biimpr φ ψ ψ φ
2 biimp φ ψ φ ψ
3 1 2 impbid φ ψ ψ φ