This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Projectors (cont.)
axpjpj
Metamath Proof Explorer
Description: Decomposition of a vector into projections. See comment in axpjcl .
(Contributed by NM , 26-Oct-1999) (Revised by Mario Carneiro , 15-May-2014) (New usage is discouraged.)
Ref
Expression
Assertion
axpjpj
⊢ H ∈ C ℋ ∧ A ∈ ℋ → A = proj ℎ ⁡ H ⁡ A + ℎ proj ℎ ⁡ ⊥ ⁡ H ⁡ A
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢ H ∈ C ℋ ∧ A ∈ ℋ → H ∈ C ℋ
2
pjhth
⊢ H ∈ C ℋ → H + ℋ ⊥ ⁡ H = ℋ
3
2
eleq2d
⊢ H ∈ C ℋ → A ∈ H + ℋ ⊥ ⁡ H ↔ A ∈ ℋ
4
3
biimpar
⊢ H ∈ C ℋ ∧ A ∈ ℋ → A ∈ H + ℋ ⊥ ⁡ H
5
1 4
pjpjpre
⊢ H ∈ C ℋ ∧ A ∈ ℋ → A = proj ℎ ⁡ H ⁡ A + ℎ proj ℎ ⁡ ⊥ ⁡ H ⁡ A